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In order to probe the roles of PIP2 in the interactions between MIM I-BAR

and model membranes, we performed a series of 10 ls-scale coarse-grained

molecular dynamics simulations. Our results indicate that PIP2 plays pre-

dominant roles in the membrane binding of MIM I-BAR in a concentration-

dependent manner and via electrostatic interactions. Besides, we find that the

occurrence of the membrane curvature may induce the re-distribution of lipids

in the membrane and result in the local enrichment of PIP2 at negatively

curved membrane areas. Combining these roles of PIP2 in the membrane

binding of MIM I-BAR helps explain how MIM I-BAR senses negative cur-

vature and, thus, contributes to maintaining membrane protrusions.

Keywords: MIM I-BAR; molecular dynamics simulations; PIP2

Membrane remodelling plays a key role in regulating

various biological processes including membrane

invaginations (e.g. endocytosis) and protrusions (e.g.

filopodia). To fulfil the whole membrane remodelling

process, many proteins such as cytoskeleton, actin,

Bin-Amphiphysin-Rvs (BAR) proteins will be

involved. It is reported that BAR proteins participate

in sensing and generating the membrane curvature [1–
4]. According to their preferences to membranes of dif-

ferent curvatures, BAR proteins are classified into

three categories: N-BAR, F-BAR and I-BAR. N-BAR,

which contains an N-terminal amphipathic helix, pre-

fers membranes of high positive curvature [5]. F-BAR,

the abbreviation of Fes/CIP4 homology BAR, has a

wide preference to positively curved membranes [6]. I-

BAR or inverse BAR is the only kind of BAR proteins

that prefers the membrane of negative curvature [7].

However, compared to N-BAR and F-BAR [8–11],
more efforts are still needed to study molecular-level

interactions between I-BAR and lipid membranes.

Missing-in-metastasis suppressor 1 (MIM/MTSS1),

which contains an I-BAR domain, plays an important

role in regulating the cell metastatic ability [12–14]. It is
widely reported in patients/animals that the MIM gene

expression is negatively correlated with the metastasis

ability of several cancer cells (e.g. bladder, breast and

Abbreviations
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gastric cancer cells) [15–18]. In order to understand the

role of MIM I-BAR in membrane remodelling, Lee et al.

[19]. resolved the crystal structure of MIM I-BAR and

found that MIM I-BAR exist in the form of a dimer. The

dimer may be the functional form of MIM I-BAR pro-

teins, since our previous studies also pointed out that

inhibiting the dimerization of MIM I-BAR can signifi-

cantly weaken MIM-mediated membrane protrusions

[20–22]. Hence, in the current work, we only focus on the

MIM I-BAR dimer. Besides, through systematic protein

mutation experiments, Mattila et al. revealed the PIP2

(also known as PI(4,5)P2, phosphatidylinositol 4, 5-

bisphosphate)- and F-actin-binding sites of MIM I-BAR

[7], which is very important for understanding the role of

MIM I-BAR in membrane remodelling. However, PIP2

is one kind of minor phospholipids (<5%) and its precur-

sor (phosphatidylinositol, PtdIns) typically accounts for

less than 15% of the total phospholipids located in intra-

cellular membranes of eukaryotic cells [23]. Whether

other major anionic lipids (e.g. phosphatidylserine, PS

lipids) can have the similar role as PIP2 in the membrane

binding process of MIM I-BAR is still unknown.

On the other hand, the mechanism how MIM I-

BAR is selectively recruited onto the negatively curved

membranes remains largely unexplored. As mentioned

above, certain lipids play important roles in the mem-

brane binding of MIM I-BAR. And lipids can differ-

entially aggregated at membrane regions of different

curvatures as indicated by large-scale molecular

dynamics (MD) simulations of complex membrane sys-

tems [24]. Hence, we hypothesize that membrane cur-

vature induced re-distribution of these key lipids may

provide an appropriate mechanism for MIM I-BAR’s

sensing membranes of the negative curvature. In order

to test this hypothesis, we aim to quantify the exact

preference of these lipids to different curvatures.

Molecular dynamics simulation provides a powerful

tool to obtain molecular-level interaction information,

which is useful to elucidate the molecular mechanisms

of many biological processes as an alternative tool to

the experiments [25,26]. Hence, in this work, we per-

form a series of coarse-grained (CG) MD simulations

to probe predominant roles of PIP2 in the membrane

binding process of MIM I-BAR as well as the molecu-

lar mechanism of how MIM I-BAR senses membranes

with negative curvature.

Methods

Molecular dynamics simulations

Coarse-grained model, which maps several heavy atoms into

one interaction site, allows MD simulations to study the

biological processes with longer time and larger length

scales. As one of the popular CG models for biological sys-

tems, Martini CG model has been widely used to study lipid

membranes and proteins [27–30]. In this work, all simula-

tions were performed with the Martini CG force field (ver-

sion 2.1) [31] using GROMACS 5.0.4 [32]. The initial membrane

systems were built using the tool insane developed by Wasse-

naar et al. [33]. The membrane systems with MIM I-BAR

contain 3870 lipids, 260 000 CG water molecules and

150 mM salt (NaCl) with the box dimension of about

36.5 nm 9 36.5 nm 9 28 nm. The membrane systems with-

out MIM I-BAR have less water molecules (~106 522) and

smaller box (~36.5 nm 9 36.5 nm 9 13.8 nm). For mem-

brane systems with MIM I-BAR, we use a very large simula-

tion box to make sure that MIM I-BAR can freely diffuse

and rotate before binding onto the membrane (the longest

dimension of MIM I-BAR dimer is around 19 nm), which is

important for nonbiased membrane binding of MIM I-BAR.

Lipids used herein include 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-

phospho-L-serine (POPS), and PIP2. The MIM I-BAR

dimer is initially placed parallel to and 8 nm apart from the

lipid membrane. To homogenize the distribution of mole-

cules, all the systems built by insane [33] are firstly simulated

at temperature T = 400K and the isobaric isothermal (NPT)

ensemble for 100 ns (The time reported in this work is the

simulation time, and the corresponding effective time can be

estimated after multiplying by 4 [31].) and then gradually

reducing the temperature to 310K. Subsequent production

simulations are performed for 10 ls with the time step of

10 fs and periodic boundary conditions.

For all simulations, a cutoff of 1.2 nm was used for van

der Waals (vdW) interactions, and the Lennard-Jones poten-

tial was smoothly shifted to zero between 0.9 nm and

1.2 nm to reduce cutoff noise. For electrostatic interactions,

the Columbic potential, with a cutoff of 1.2 nm, was

smoothly shifted from 0 to 1.2 nm. The relative dielectric

constant was 15, which is the default value of the force field

[31]. Lipids, MIM I-BAR and water plus ions, were coupled

separately to V-rescale heat baths [34] at T = 310K, with a

coupling constant s = 1 ps. The systems were simulated at

1 bar pressure using a semi-isotropic Parrinello–Rahman

pressure coupling scheme [35] with a coupling constant

s = 5 ps and compressibility of 3 9 10�4 bar�1. The neigh-

bour list for nonbonded interactions was updated every 10

steps with a cut-off of 1.2 nm. Snapshots of the simulation

systems are rendered by VMD [36].

Results and Discussion

Coarse-grained model of MIM I-BAR

In order to study the interactions between Homo sapi-

ens MIM I-BAR and model membranes with Martini

CG model [31,37], the amino acid sequence (Fig. 1A)
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and the secondary structure of MIM I-BAR are neces-

sary to construct the CG parameters for MIM I-BAR.

However, the experimental crystal structure of Homo

sapiens MIM is only available for its WH2 domain

rather than the I-BAR domain [19]. Fortunately, the

crystal structure of its homologous Mus musculus

MIM I-BAR (PDB ID: 2D1L [19]) is available, which

has a very similar amino acid sequence (Figs 1A and

S1) and therefore may have a similar structure to

Homo sapiens MIM I-BAR. Hence, we obtain the ato-

mistic structure of Homo sapiens MIM I-BAR

(Fig. 1B) by performing homology modelling with

MODELLER [38] using Mus musculus MIM I-BAR

as a template. The secondary structure of Homo sapi-

ens MIM I-BAR was then calculated using DSSP pro-

gram on the atomic structure [39]. With the

information of the amino acid sequence and the sec-

ondary structure, we generate the CG conformation

(Fig. 1C) and parameters for Homo sapiens MIM I-

BAR.

PIP2 plays predominant roles in the membrane

binding of MIM I-BAR

To study the roles of PIP2 in the membrane binding

of the MIM I-BAR, six membrane systems are used:

one pure POPC bilayer, two asymmetric POPC/PIP2

membranes with 5% and 15% PIP2 in one membrane

leaflet (Fig. 2), three asymmetric POPC/POPS mem-

branes with 5%, 15% and 25% POPS in one leaflet

(Fig. 3). MIM I-BAR dimer is placed adjacent to the

membrane leaflet with PIP2 or POPS. Figure 2A

shows the last system snapshots of 10 ls CGMD sim-

ulation trajectories with different PIP2 concentrations.

As shown, MIM I-BAR binds tightly onto the lipid

membrane only in the presence of PIP2. Besides, the

interaction energy (Fig. 2B) and contacts (Fig. 2C)

between MIM I-BAR and the lipid membrane further

reveal that the membrane binding ability of MIM I-

BAR is dependent on the PIP2 concentration.

In order to quantify detailed interactions between

MIM I-BAR and PIP2 molecules, we further focus on

the system POPC+15%PIP2. As shown in the system

snapshots (Fig. 3A), the membrane binding of MIM I-

BAR can induce local PIP2 clustering. This somehow

promotes the overall PIP2 clustering (Fig. 3B), which

is consistent with the reported experiments of MIM I-

BAR [40,41]. After further analysing the direct con-

tacts between MIM I-BAR and PIP2 molecules, we

find that PIP2 binding sites are mainly located at two

ends of the MIM I-BAR dimer (Fig. 3C,D), which

reproduces the consistent contact fingerprints of PIP2

on the surface of MIM I-BAR as the PIP2-binding

experiments by Mattila et al. [7]. The consistency

between our simulations and the reported experiments

well validates the applicability of Martini CG model

on the current work and our finding on the predomi-

nant roles of PIP2 in the membrane binding of MIM

I-BAR.

Considering the large negative charges on the PIP2’s

head-group and many positively charged residues on

the surface of MIM I-BAR (Fig. 2D), electrostatic

interactions may explain the predominant roles of

PIP2 in the membrane binding of MIM I-BAR. Here,

we also want to know membranes containing other

negatively charged lipids (e.g. POPS, one major anio-

nic lipid in plasma membrane) can have the similar

ability to recruit MIM I-BAR. As shown in Fig. 4A,

the binding affinity of MIM I-BAR with the mem-

brane is not strong, and the membrane containing as

high as 25% POPS still fails to fully recruit MIM I-

BAR, which is consistent with the all-atom MD simu-

lations of the interactions between the BAR-PH

domain and the lipid membrane [42]. Quantifications

MIM I-BAR (Human, 250aa):
MEAVIEKECS ALGGLFQTII SDMKGSYPVW 
EDFINKAGKL QSQLRTTVVA AAAFLDAFQK 
VADMATNTRG GTREIGSALT RMCMRHRSIE 
AKLRQFSSAL IDCLINPLQE QMEEWKKVAN 
QLDKDHAKEY KKARQEIKKK SSDTLKLQKK 
AKKGRGDIQP QLDSALQDVN DKYLLLEETE 
KQAVRKALIE ERGRFCTFIS MLRPVIEEEI
SMLGEITHLQ TISEDLKSLT MDPHKLPSSS
EQVILDLKGS

A
B

C

Fig. 1. The amino acid sequence and structure of Homo sapiens MIM I-BAR used in the current work. Amino acid sequence (A) and all-

atom configuration shown in ‘Cartoon’ (B) of MIM I-BAR with the colouring style: a-Helix (purple), 3_10_Helix (blue), Coil (white), Turn

(cyan). The underlined amino acids are the differences between Homo sapiens and Mus musculus MIM I-BAR (Details can be found in

Fig. S1). (C) Coarse-grained representation of MIM I-BAR dimer with backbone in pink and side-chain in yellow. The MIM I-BAR dimer is

shown in the structure snapshots (B,C).
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Coarse-grained configuration of MIM I-BAR with the colour representing the contact probability with PIP2 molecules. (D) MIM I-BAR’s

residue-based contact probability with PIP2 molecules.
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of the detailed interactions (Fig. 4B,C) further indicate

that MIM I-BAR has only one-fifth interaction

strength with the lipid membrane of high POPS con-

centration (25%), compared to that with lipid mem-

brane of the low PIP2 concentration (5%). Further

increasing POPS concentration (15%  25%) does

not show any enhancement on the binding affinity of

MIM I-BAR. In other words, POPS does not have

comparable roles as PIP2 in the membrane binding of

MIM I-BAR, which validates the predominant roles of

PIP2 in this process.

For membrane systems POPC + 25%POPS and

POPC + 5%PIP2, they have same total surface nega-

tive charges. However, as discussed above, the latter

system shows the much better ability in recruiting

MIM I-BAR. Here, we further explore the mechanism

for the predominant roles of PIP2 in the membrane

binding process of MIM I-BAR. As is known, POPS

has only one net negative charge on its head-group,

whereas PIP2 has five net negative charge on its head-

group. Although the total surface charges are the

same, the local distribution of these negative charges

may greatly affect the local electrostatic interactions

between MIM I-BAR and the lipid membrane, which

determines the membrane binding process of MIM I-

BAR. As shown in Fig. 5, compared to the POPS-con-

taining membrane, the PIP2-contatining membrane

can have much larger local surface charge density due

to the transient and local PIP2 clustering. This local

membrane patches of intensive negative charges can

greatly strengthen the electrostatic interactions of

MIM I-BAR with the lipid membrane and thus

enhance the membrane binding process of MIM I-

BAR. Besides, POPS has a much smaller head-group

than PIP2 and is easier to be buried in the bulk mem-

brane, which hinders the recognition by MIM I-BAR.

All these points explain the molecular mechanism for

the predominant roles of PIP2 in the membrane bind-

ing process of MIM I-BAR.

Membrane curvature promotes PIP2 clustering in

negatively curved membrane areas

As discussed above, we have uncovered the critical

roles of PIP2 in the membrane binding of MIM I-

BAR. However, whether PIP2 plays certain roles in

the sensing negatively curved membranes of MIM I-

BAR is still not clear. In order to elucidate this ques-

tion, we focus on the difference of PIP2 distribution

between curved and planar membranes. First, an

asymmetric lipid membrane without MIM I-BAR

containing pure POPC in one membrane leaflet and

70% POPC, 25% POPS, 5% PIP2 in the other leaflet

is built and run for 10 ls. Then, a sufficient lateral

pressure is added to the last frame of the planar

membrane simulation trajectory to generate the curva-

ture. The curved membrane system is also run for

10 ls using the isothermal-isochoric (NVT) ensemble
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Fig. 4. The membrane binding affinity of MIM I-BAR is not dependent on the concentration of POPS molecules. (A) The system snapshots

of MIM I-BAR interacting with POPC membranes with 0%, 5% and 15% POPS molecules at t = 10 ls. (B) The interaction energy and (C)

number of contacts between MIM I-BAR and lipids. Mean � SEM is shown, based on the block average (eight blocks, size: 500 ns) over

the last 4 ls of 10 ls MD trajectories.

5FEBS Letters (2018) ª 2018 Federation of European Biochemical Societies

X. Lin et al. Roles of PIP2 in the membrane binding of MIM I-BAR



0 6 12 18 24 30 36
0

6

12

18

24

30

36

0 6 12 18 24 30 36
0

6

12

18

24

30

36

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

0 6 12 18 24 30 36
0

6

12

18

24

30

36

0 6 12 18 24 30 36
0

6

12

18

24

30

36

(nm)

(n
m

)

(nm)
(n

m
)

(nm)

(n
m

)

(nm)

(n
m

)

First 10 ns Last 10 nsA

B

C D

6 FEBS Letters (2018) ª 2018 Federation of European Biochemical Societies

Roles of PIP2 in the membrane binding of MIM I-BAR X. Lin et al.



to keep the curvature. As shown in Fig. 6A, our

curved membrane has both the negative and positive

curvature at the PIP2 side, which enables the direct

quantification of PIP2’s preference to them. Both the

side-view and top-view of our curved membrane indi-

cate that PIP2 has the tendency to aggregate at the

negatively curved membrane area (Fig. 6A,B). To val-

idate this phenomenon, we count the number of dif-

ferent lipid molecules in both negatively and

positively curved membrane areas (Fig. 6C), which

correspond to the lower and upper halves of the

curved membrane (The middle of the membrane is

shown in light blue in Fig. 6A). It is worth mention

that the division from the centre will make the posi-

tively curved membrane area larger than the nega-

tively curved one. In other words, there will more

lipids in total in the positively curved membrane

(Fig. 6C). However, the negatively curved membrane

area has more PIP2 molecules, which indicates larger

PIP2 concentration in this area (5% in planar mem-

brane) and smaller PIP2 concentration in positively

curved membrane area. The enrichment of PIP2 in

our negatively curved membrane shown here is consis-

tent with the case of a much more complicated mem-

brane reported by Kolds et al. [24]. Although PIP2

has a large head-group, PIP2 used herein also con-

tains a polyunsaturated acyl chain (arachidonic acid),

which is very disordered, takes more space and thus

redefines the lipid shape. This property tunes PIP2’s

preference to the negative curvature. Besides, using

the script developed by Janosi et al. [43–45], we fur-

ther quantify the detailed distribution of the PIP2

clusters. As shown in Fig. 6D, there is much more

chance to have larger PIP2 clusters (no less than 15

molecules). In other words, membrane curvature can

re-distribute PIP2 molecules and promote the local

enrichment and thus clustering of PIP2 molecules in

negatively curved membrane areas. As discussed

above, the membrane binding of MIM I-BAR posi-

tively correlates with the PIP2 concentration. This

provides a reasonable explanation for how MIM I-

BAR senses the negatively curved membrane.
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Fig. 6. Membrane Curvature induce the

redistribution of PIP2. Side-view (A) and

top-view (B) snapshots of the POPC

(outer)-POPC/POPS/PIP2 (inner) curved

membrane at t = 10 ls; POPC, POPS,

PIP2 in the inner membrane leaflet are
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Fig. 5. The surface charge density maps of the membrane leaflets close to the MIM I-BAR for system POPC + 25%POPS (A) and

POPC + 5%PIP2 (B) based on the first and the last 10 ns of 10 ls trajectories. The colour represents different surface charge density as

shown in the right colour-bar. And such short time duration was chosen to reflect the transient charge density distribution in case the

difference was averaged out over a long time period. Top-view snapshots of system POPC + 25%POPS (C) and POPS + 5%PIP2 (D),

where POPC is coloured in green, POPS in blue and PIP2 in red.

7FEBS Letters (2018) ª 2018 Federation of European Biochemical Societies

X. Lin et al. Roles of PIP2 in the membrane binding of MIM I-BAR



As discussed above, our simulations have revealed

the predominant roles of PIP2 in the membrane bind-

ing process of MIM I-BAR on molecular level

(Scheme 1). PIP2 (one minor lipid in the plasma mem-

brane) exerts much better ability in promoting the

effective membrane binding of MIM I-BAR than

POPS (one major anionic lipid). Meanwhile, the mem-

brane binding of MIM I-BAR could in turn promote

the local clustering of the surrounding PIP2 molecules

at its two ends [46], which is crucial for the following

membrane protrusion formation by synergistic interac-

tions with actin proteins [7,12,19,47]. On the other

hand, the occurrence of membrane curvature can

induce the redistribution of lipids with the enrichment

of PIP2 molecules at the negatively curved membrane

areas (lower panel in Scheme 1). It is PIP2’s preference

to the negative membrane curvature that help elucidate

how MIM I-BAR senses negatively curved membranes

and helps maintain the membrane protrusion7.

Conclusion

In this work, we have performed a series of 10 ls-
scale CGMD simulations to study the roles of PIP2

in the membrane binding of MIM I-BAR. Our

results indicate that PIP2 plays an essential role in

the membrane binding of MIM I-BAR in a concen-

tration-dependent manner. In turn, MIM I-BAR

can also induce the local PIP2 clustering at its two

ends due to the preferred interactions between these

residues and PIP2 molecules. The effective mem-

brane binding of MIM I-BAR lays the foundation

for the overall membrane protrusion process [7,48].

On the other hand, we find that spontaneous mem-

brane bending can induce the re-distribution of

PIP2 molecules and promote the enrichment of

PIP2 at negatively curved membrane areas. Consid-

ering these predominant roles of PIP2 in the mem-

brane binding of MIM I-BAR, this finding can well

explain how MIM I-BAR senses the negative curva-

ture and helps maintain the membrane protrusions

[48]. The insights provided by our simulations

(Scheme 1) shed light on the molecular-level mem-

brane binding process of MIM I-BAR, which is an

effective supplement in understanding the roles of

MIM I-BAR in generating and maintaining mem-

brane protrusions.
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Fig. S1. The amino acid sequence similarity between

human and mouse MIM I-BAR proteins.

Movie S1. 5%-PIP2.mpg: 95% POPC + 5% PIP2 +
MIM I-BAR.

Movie S2. 25%-PS.mpg: 75% POPC + 25% POPS +
MIM I-BAR.

Movie S3. 10%-PS.mpg: 90% POPC + 10% POPS +
MIM I-BAR.

Movie S4. 10%-PS-5%-PIP2.mpg: 85% POPC + 10%

POPS + 5% PIP2 + MIM I-BAR.
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